Seminario 14/26: M.A.CARNERO (UA) – Identification of asymmetric conditional heteroskedasticity in the presence of outliers


  • Ponente: María Angeles Carnero, Universidad de Alicante
  • Fecha: 20/nov/2014 - 16:30 horas
  • Lugar: Seminario del Dpto de Métodos Cuantitativos para la Economía y la Empresa, Facultad de Economía y Empresa, Murcia. Se procurará retransmitirlo en directo para doctorandos/as e investigadores/as remotos/as del Programa.

ABSTRACT: The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities. We show that, as expected, one isolated big outlier biases the sample cross-correlations towards zero and hence could hide true leverage effect. Unlike, the presence of two or more big consecutive outliers could lead to detecting spurious asymmetries or asymmetries of the wrong sign. We also address the problem of robust estimation of the cross-correlations by extending some popular robust estimators of pairwise correlations and autocorrelations. Their finite sample resistance against outliers is compared through Monte Carlo experiments. Situations with isolated and patchy outliers of different sizes are examined. It is shown that a modified Ramsayweighted estimator of the cross-correlations outperforms other estimators in identifying asymmetric conditionally heteroscedastic models. Finally, the results are illustrated with an empirical application.

Deja un comentario

Tu dirección de correo no se publicará. Los campos obligatorios están marcados con *

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

borrarEnviar comentario